Faculty Profile

Dr Faisal Sultan
Assistant Professor (HoD)
PhD
Research Interests

Mathematical Modelling, Kinetic Modelling, Invariant Manifold in Multi-Route Chemical Reactions

Biography

Dr. Faisal Sultan is working as Assistant Professor at Institute of Mathematics, Khwaja Fareed University of Engineering and Technology, Rahim Yar Khan. He received PhD Degree From Hazara University Mansehra, KPK, Pakistan. His current research work mainly focused on Mathematical Modeling of Multi-Route Complex Chemical Reactions. He has completed a project (12000 SAR) in 2020 as a Co-PI and currently supervising 3 PhD and 2 MPhil scholars.

Publications

  1. The Quantitative Role of Chemical Species in Multi-route Reaction: A Mathematical Paradigm
  2. Faisal Sultan, Muhammad Shahzad, Mehboob Ali, Anees ur Rehman, Arshed Ali, Mohamed Altanji, S.I.A. Shah. Journal of Molecular Liquids 336(15 August 2021).
  3. Dynamics models for identifying the key transmission parameters of the COVID-19 disease. M. Shahzad, A.H.A. Aty, Raghd, A.M.A. Sarbaz, H.A. Khoshnaw Dipo Aldila, M Ali, Faisal Sultan. Alexandria Engineering Journal, 60(1), (February 2021), 757-765.
  4. Spectral quasi equilibrium manifold and intrinsic low dimensional manifold: A multi-step reaction mechanism. Faisal Sultan, Muhammad Shahzad, Mehboob Ali. International Communications in Heat and Mass Transfer, 121, (February 2021), 105098.
  5. Activation Energy Characteristics of Chemically Reacting Species in Multi Route Complex Reaction Mechanism. F. Sultan, W.A. Khan, M. Ali, M. Shahzad, S.I.A. Shah. Indian. J. Phys. 94,(14 November 2019) 1795–1802. https://doi:10.1007/s12648019-01624-2.
  6. Balancing the Chemical Equations and their Steady State Approximations in the Complex Reaction Mechanism: Linear Algebra Techniques. F Sultan, M Shahzad, M Ali, W Adnan, W A Khan. Appl Nanosci,(03 April 2020),10,(5247–5252) https://doi.org/10.1007/s13204-020-01370-6
  7. Multi-Route Reaction Mechanism and Steady State Flow: A MATLAB based Analysis. F. Sultan, M. Ali, M. Shahzad, M. Khan. Appl Nanosci. (27 April 2020), 10,(3287–3294) https://doi.org/10.1007/s13204-020 01410-1,
  8. The impact of the rate coefficient over the reaction mechanism. F. Sultan, M. Ali, S. Mustafa, M. Shahzad, A. Iqbal. Appl Nanosci. (10 July 2020),10,(5375–5381), https://doi.org/10.1007/s13204-02001501-z,
  9. Slow Invariant Manifolds and its Approximation in a Multi-Route Reaction Mechanism: A Case Study of Iodized H2/O Mechanism. F. Sultan, W A Khan, M Ali, M Shahzad, F Khan, M Waqas. J. Mol. Liq, 288, p.111048. https://doi.org/10.1016/j.molliq.2019.111048,
  10. The reaction routes comparison with respect to slow invariant manifold and equilibrium points F. Sultan, M. Shahzad, M. Ali and W.A. Khan. AIP Adv, 9(1), p.015212. https://doi.org/10.1063/1.5050265,
  11. C-Matrix and Invariants in Chemical Kinetics: A Mathematical Concept. M. Shahzad, F. Sultan, I. Haq, M. Ali and W. A. Khan. Pramana - J Phys 92(4), p.64. https://doi.org/10.1007/s12043-019-1723-5,
  12. Physical assessments on chemically reacting species and reduction schemes for the approximation of invariant manifolds M. Shahzad, F. Sultan, S.I.A. Shah, M. Ali, H.A. Khan and W.A. Khan. J. Mol. Liqs 285 p. 237–243. https://doi.org/10.1016/j.molliq.2019.03.031,
  13. Slow invariant manifold assessments in multi-route reaction mechanism
  14. M. Shahzad, F. Sultan, M. Ali, W. A. Khan, M. Irfan. J. Mol. Liq. 284, p.265-270. https://doi.org/10.1016/j.molliq.2019.111048,
  15.  
  16. Numerical Simulations for the Equilibrium State and Solution Behaviors in the Multi-Phase Catalytic Reaction Mechanism. M. Shahzad, F. Sultan, M. Ali, I. Tauseef, S. Ahmed. Int Commun Heat Mass, 118, p.104818. https://doi.org/10.1016/j.icheatmasstransfer.2020.104818,
  17. Computational analysis on transition time-period in complex reaction mechanism. Mehboob Ali, Muhammad Shahzad, Faisal Sultan, Soma Mustafa, Sheikh Rashid. Applied Nanoscience, 2020.
  18. Modelling Multi-Route Reaction Mechanism on Surfaces: A Mathematical and Computational Approach. M. Shahzad, F. Sultan, M. Ali, W.A. Khan, S. Mustafa. Appl Nanosci, https://doi.org/10.1007/s13204-020-01275-4,
  19. Computational Analysis of the Slow Invariant Manifold for Single and Multi-Route Reaction Mechanisms. M. Shahzad, M. Ali, F. Sultan, W.A. Khan. Sci Iran, 27(3), pp.1293-1299. https://doi:10.24200/sci.2020.53151.3080,
  20. Physical assessments on the invariant region in multi-route reaction mechanism. M. Ali, M. Shahzad, F. Sultan, W.A. Khan Physica A, 545, p.122499. https://doi.org/10.1016/j.physa.2019.122499,
  21. Evaluation of steady-state to identify the fast-slow completion-route in the multi-route reaction mechanism. M. Ali, S. Hamza, D. Aldila, F. Sultan, S. Mustafa, M. Shahzad. Applied Nanoscience, Appl Nanosci, 10, p.3405–3410. https://doi.org/10.1007/s13204-020-01455-2,
  22. The C matrix augmentation in a multi route reaction mechanism. M Shahzad, SIA Shah, F Sultan, M. Ali. Appl Nanosci. https://doi.org/10.1007/s13204-020-01497-6,
  23. Important features of expanding/contracting cylinder for Cross magneto-nanofluid flow. M. Ali, F. Sultan, M. Shahzad, W.A. Khan, H. Arif. Chaos Soliton Fract, 133, p.109656. https://doi.org/10.1016/j.chaos.2020.109656,
  24. A Numerical Treatment on Rheology of Mixed Convective Carreau nanofluid with Variable Viscosity and Thermal Conductivity. F. Sultan, S. Mustafa, W.A. Khan, M. Shahzad, M. Ali, W. Adnan, S. Rehman. Appl Nanosci, 10, p.3295–3303, https://doi.org/10.1007/s13204-020-01294-1,
  25. Influence of homogeneous-heterogeneous reaction model for 3D Cross fluid flow: A comparative study M. Ali, F. Sultan, M. Shahzad, W.A. Khan, (2020). Indian. J. Phys. https://doi.org/10.1007/s12648-020-01706-6,
  26. A note on activation energy and magnetic dipole aspects for Cross nanofluid subjected to cylindrical surface. W.A. Khan, M. Ali, M. Shahzad, F. Sultan, M. Irfan and Z. Asghar. Appl Nanosci, 10(8), p.3235-3244. https://doi:10.1007/s13204-019-01220-0.
  27. Numerical Investigation on thermally radiative time-dependent Sisko nanofluid flow for curved surface. M. Ali, W.A. Khan, F. Sultan, M. Shahzad. Physica A, p.124012 https://doi.org/10.1016/j.physa.2019.124012,
  28. Computational Investigation of Magneto-Cross fluid flow with multiple slip along wedge and chemically reactive species. M. Shahzad, M. Ali, F. Sultan, W.A. Khan, Z. Hussain. Results Phys, 16, p.102972, https://doi.org/10.1016/j.rinp.2020.102972,
  29. Optimised wave perturbation for the linear instability of magnetohydrodynamics in plane Poiseuille flow. Z. Hussain, M. Ali, M. Shahzad, F. Sultan. Pramana – J. Phys. 94(1), pp.1-6 https://doi.org/10.1007/s12043-019-1900-6,
  30. Numerical Analysis of Chemical Reaction and non-linear Radiation for
  31. Magneto-Cross Nanofluid over a Stretching Cylinder. M. Ali, M. Shahzad, F. Sultan, W.A. Khan. Appl Nanosci. https://doi.org/10.1007/s13204-020-01385-z,
  32. Exploring the features of stratification phenomena for 3D flow of Cross nanofluid considering activation energy M Ali, M Shahzad, F Sultan, W A Khan, S Rashid. Int Commun Heat Mass, 116,p.104674.https://doi.org/10.1016/j.icheatmasstransfer.2020.104674,
  33. Characteristic of heat transfer in flow of Cross nanofluid during melting process. M Ali, M Shahzad, F Sultan, W A Khan, S Z H Shah. Appl Nanosci https://doi.org/10.1007/s13204-020-01532-6,
  34. A Quantitative and Qualitative Analysis of the COVID–19 Pandemic
  35. Model. S H. A. Khoshnaw, M Shahzad, M Ali, F Sultan. Chaos Soliton Fract, p.109932. https://doi.org/10.1016/j.chaos.2020.109932,
  36. PhysicalsignificanceofchemicalprocessesandLorentz’sforcesaspects on Sisko fluid flow in curved configuration. M. Ali, M. Irfan, W.A. Khan, F. Sultan, M. Shahzad and M. Khan. Soft Comput, 24, p.16213–16223 https://doi.org/10.1007/s00500-020-04935-3,
  37. Computational analysis of entropy generation for cross-nanofluid flow
  38. M. Ali, W.A. Khan, M. Irfan, F. Sultan, M. Shahzad and M. Khan. Appl Nanosci, 10(8), pp.3045-3055 https://doi.org/10.1007/s13204-019-01038-w,
  39. A rheological analysis of nanofluid subjected to melting heat transport characteristics. W.A. Khan, M. Ali, M. Irfan, M. Khan, M. Shahzad and F. Sultan. Appl Nanosci, 10, p.3161–3170 https://doi.org/10.1007/s13204-019-01067-5,
  40. Mathematical modeling and analysis of Cross nanofluid flow subjected to entropy generation. S. Z. Abbas, W. A. Khan, H. Sun, M. Ali, M. Irfan, M. Shahzad and F. Sultan. Appl Nanosci,.10(8), p.3149-3160 https://doi.org/10.1007/s13204-019-01039-9,
  41. Importance of heat generation in chemically reactive flow subjected to convectively heated surface. W A Khan, H Sun, M Shahzad, M Ali, F Sultan and M Irfan. Indian. J. Phys. https://doi.org/10.1007/s12648-019-01678-2,
  42. Vibrio cholerae dynamics in drinking water; mathematical and statistical analysis. Z. Hussain, A.Z. Abbasi, R. Ahmad, H. Bukhari, M. Shahzah, F. Sultan, M. Ali Appl Nanosci. https://doi.org/10.1007/s13204-020-01292-3,
  43. Instability of Magneto Hydro Dynamics Couette flow for electrically conducting fluid through porous media Z. Hussain, N. Khan, T. Gul, M. Ali, M. Shahzad, F. Sultan. Appl Nanosci. https://doi.org/10.1007/s13204-020-01307-z,
  44. MHD instability of Hartmann flow of nanoparticles Fe2O3 in water
  45. Z. Hussain, A.U. Rehman, R. Zeesahan, F. Sultan, T.A. hamid, M. Ali, M.
  46. Shahzad. Appl Nanosci. https://doi.org/10.1007/s13204-020-01308-y,
  47. MHD Instability of Two Fluids Between Parallel Plates. Z. Hussain, S. Zuev, A. Kabobel, M. Ali, F. Sultan, M. Shahzad. Appl Nanosci. https://doi.org/10.1007/s13204-020-01361-7,
  48. Numerical simulation for MHD flow of Casson nanofluid by heated surface. S. Khan, W. Shu, M. Ali, F. Sultan, M. Shahzad. Appl Nanosci. https://doi.org/10.1007/s13204-020-01546-0,
  49. Isolation, identification and antibacterial study of pigmented bacteria. S. Qayyum, S. Basharat, A.H. Mian, S. Qayum, M. Ali, P. Changsheng, F. Sultan, M. Shahzad, Appl Nanosci. https://doi.org/10.1007/s13204-020-01363-5,
  50. An optimised stability model for the magnetohydrodynamic fluid. ZAKIR HUSSAIN1, RAJA ZEESAHAN, MUHAMMAD SHAHZAD, MEHBOOB ALI, FAISAL SULTAN, AHMED M ANTER, HUISHENG ZHANG and NAZAR KHAN
  51. Pramana – J. Phys. (2021) 95:27 https://doi.org/10.1007/s12043-020-02043-3,
  52. Importance of entropy generation and infinite shear rate viscosity for non-Newtonian nanofluid. F. Sultan, W.A. Khan, M. Ali, M. Shahzad, H. Sun, M. Irfan. J. Braz. Soc. Mech. Sci. Eng, 41(10), p.439. https://doi:10.1007/s40430-019-1950-1
  53. Theoretical aspects of thermophoresis and Brownian motion for 3D flow of Cross fluid with activation energy. F. Sultan, W.A. Khan, M. Ali, M. Shahzad, M. Irfan and M. Khan. Pramana – J. Phys. 92(2), p.21. https://doi.org/10.1007/s12043-018-1676-0.
  54. Physical Assessments on variable thermal conductivity and Heat generation/Absorption in Cross Magneto Flow Model. F. Sultan, W.A. Khan, M. Shahzad, M. Ali, Z. Hussain. J Therm Anal Calorim, 140, p.1069–1078. https://doi:10.1007/s10973-019-08957-4,
  55. Consequences of activation energy and binary chemical reaction for 3D flow of Cross-nanofluid with radiative heat transfer. W. A. Khan, F. Sultan, M. Ali, M. Shahzad, M. Khan, M. Irfan. J. Braz. Soc. Mech. Sci. Eng., 41(1), p.4. https://doi.org/10.1007/s40430-018-1482-0.
  56. Exploring the physical aspects of nanofuid with entropy generation. M. Ali, F. Sultan, W.A. Khan, M. Shahzad and M. Khan. Appl Nanosci, 10, p.3215–3225. https://doi.org/10.1007/s13204-019-01173-4,
  57. Importance of convective heat transfer in flow of non-Newtonian nanofluid featuring Brownian and thermophoretic diffusions. W.A. Khan, M. Ali, M. Waqas, M. Shahzad, F. Sultan, M. Irfan. Int J. Num Meth Heat and Fluid Flow, 29 (12), p. 4624-4641 https://doi.org/10.1108/HFF-01-2019-0066,
  58. Theoretical Analysis of Cross Nanofluid flow with Nonlinear Radiation and Magnetohydrodynamic. M. Shahzad, M. Ali, F. Sultan, W.A. Khan, Z. Hussain, M. Irfan. Indian. J. Phys. p.1-8 https://doi.org/10.1007/s12648-019-01669-3
  59. Transport of radiative heat transfer in dissipative Cross nanofluid flow with entropy generation and activation energy M. Shahzad, H. Sun, F. Sultan, W.A. Khan, M. Ali, M. Irfan. Phys Scripta. 94(11), p.115224. https://doi.org/10.1088/1402-4896/ab2cal,
  60. Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of Cross magnetofluid W.A. Khan, M. Ali, F. Sultan, M. Shahzad, M. Khan and M. Irfan. Pramana – J. Phys. 92(2), p.16. https://doi.org/10.1007/s12043-018-1678-y.
  61. Mathematical analysis of thermally radiative time-dependent Sisko nanofluid flow for curved surface. W.A. Khan, M. Waqas, M. Ali, F. Sultan, M. Shahzad and M. Irfan. Int J. Num Meth Heat and Fluid Flow, 29:(9). p.3498-3514. https://doi.org/10.1108/HFF-12-2018-0746,
  62. Numerical treatment of activation energy for the three-dimensional flow of a cross magnetonanoliquid with variable conductivity S. Muhammad, G Ali, S I A Shah, M Irfan, W A Khan, M Ali and F Sultan. Pramana – J. Phys. 93(3), p.40., https://doi.10.1007/s12043-019-1800-9,
  63. Characteristics of chemical processes and heat source/sink with wedge geometry. I. Haq, M. Shahzad, W.A. Khan, M. Irfan, S. Mustafa, M. Ali and F. Sultan. Case Studies in Thermal Engineering. 14, p. 100432. https://doi.org/10.1016/j.csite.2019.100432,
  64. Slow Manifolds in Chemical Kinetics. M Shahzad, I Haq, F. Sultan, A Wahab, F Faizullah G Rahman Kinetics. J.Chem.Soc.Pak.
  65. Computing the Low Dimension Manifold in Dissipative Dynamical Systems. M. Shahzad, F. Sultan, I. Haq, A. Wahab, M. Naeem and Fazal Haq. The Nucleus. 53 (2), (2016) 107-113